Golang 之协程详解
Golang 线程和协程的区别
备注:需要区分进程、线程(内核级线程)、协程(用户级线程)三个概念。
- 进程、线程 和 协程 之间概念的区别
对于 进程、线程,都是有内核进行调度,有 CPU 时间片的概念,进行 抢占式调度(有多种调度算法)
对于 协程(用户级线程),这是对内核透明的,也就是系统并不知道有协程的存在,是完全由用户自己的程序进行调度的,因为是由用户程序自己控制,那么就很难像抢占式调度那样做到强制的
CPU 控制权切换到其他进程/线程,通常只能进行 协作式调度,需要协程自己主动把控制权转让出去之后,其他协程才能被执行到。
- goroutine 和协程区别
本质上,goroutine 就是协程。 不同的是,Golang 在 runtime、系统调用等多方面对 goroutine 调度进行了封装和处理,当遇到长时间执行或者进行系统调用时,会主动把当前
goroutine 的CPU (P) 转让出去,让其他 goroutine 能被调度并执行,也就是 Golang 从语言层面支持了协程。Golang
的一大特色就是从语言层面原生支持协程,在函数或者方法前面加 go关键字就可创建一个协程。
- 其他方面的比较
内存消耗方面
每个 goroutine (协程) 默认占用内存远比 Java 、C 的线程少。 goroutine:2KB 线程:8MB线程和 goroutine 切换调度开销方面
线程/goroutine 切换开销方面,goroutine 远比线程小 线程:涉及模式切换(从用户态切换到内核态)、16个寄存器、PC、SP…等寄存器的刷新等。
goroutine:只有三个寄存器的值修改 - PC / SP / DX.
协程底层实现原理
线程是操作系统的内核对象,多线程编程时,如果线程数过多,就会导致频繁的上下文切换,这些 cpu
时间是一个额外的耗费。所以在一些高并发的网络服务器编程中,使用一个线程服务一个 socket
连接是很不明智的。于是操作系统提供了基于事件模式的异步编程模型。用少量的线程来服务大量的网络连接和I/O操作。但是采用异步和基于事件的编程模型,复杂化了程序代码的编写,非常容易出错。因为线程穿插,也提高排查错误的难度。
协程,是在应用层模拟的线程,他避免了上下文切换的额外耗费,兼顾了多线程的优点。简化了高并发程序的复杂度。举个例子,一个高并发的网络服务器,每一个socket连接进来,服务器用一个协程来对他进行服务。代码非常清晰。而且兼顾了性能。
那么,协程是怎么实现的呢?
他和线程的原理是一样的,当 a线程 切换到 b线程 的时候,需要将 a线程 的相关执行进度压入栈,然后将 b线程 的执行进度出栈,进入
b线程 的执行序列。协程只不过是在 应用层 实现这一点。但是,协程并不是由操作系统调度的,而且应用程序也没有能力和权限执行 cpu
调度。怎么解决这个问题?
答案是,协程是基于线程的。内部实现上,维护了一组数据结构和 n 个线程,真正的执行还是线程,协程执行的代码被扔进一个待执行队列中,由这
n 个线程从队列中拉出来执行。这就解决了协程的执行问题。那么协程是怎么切换的呢?答案是:golang 对各种 io函数
进行了封装,这些封装的函数提供给应用程序使用,而其内部调用了操作系统的异步 io函数,当这些异步函数返回 busy 或 bloking
时,golang 利用这个时机将现有的执行序列压栈,让线程去拉另外一个协程的代码来执行,基本原理就是这样,利用并封装了操作系统的异步函数。包括
linux 的 epoll、select 和 windows 的 iocp、event 等。
由于golang是从编译器和语言基础库多个层面对协程做了实现,所以,golang的协程是目前各类有协程概念的语言中实现的最完整和成熟的。十万个协程同时运行也毫无压力。关键我们不会这么写代码。但是总体而言,程序员可以在编写
golang 代码的时候,可以更多的关注业务逻辑的实现,更少的在这些关键的基础构件上耗费太多精力。
协程的历史以及特点
协程(Coroutine)是在1963年由Melvin E. Conway USAF, Bedford,
MA等人提出的一个概念。而且协程的概念是早于线程(Thread)提出的。但是由于协程是非抢占式的调度,无法实现公平的任务调用。也无法直接利用多核优势。因此,我们不能武断地说协程是比线程更高级的技术。
尽管,在任务调度上,协程是弱于线程的。但是在资源消耗上,协程则是极低的。一个线程的内存在 MB 级别,而协程只需要 KB
级别。而且线程的调度需要内核态与用户的频繁切入切出,资源消耗也不小。
我们把协程的基本特点归纳为:
- 协程调度机制无法实现公平调度
- 协程的资源开销是非常低的,一台普通的服务器就可以支持百万协程。
那么,近几年为何协程的概念可以大热。我认为一个特殊的场景使得协程能够广泛的发挥其优势,并且屏蔽掉了劣势 –>
网络编程。与一般的计算机程序相比,网络编程有其独有的特点。
- 高并发(每秒钟上千数万的单机访问量)
- Request/Response。程序生命期端(毫秒,秒级)
- 高IO,低计算(连接数据库,请求API)。
最开始的网络程序其实就是一个线程一个请求设计的(Apache)。后来,随着网络的普及,诞生了C10K问题。Nginx 通过单线程异步 IO
把网络程序的执行流程进行了乱序化,通过 IO 事件机制最大化的保证了CPU的利用率。
至此,现代网络程序的架构已经形成。基于IO事件调度的异步编程。其代表作恐怕就属 NodeJS了吧。
异步编程的槽点
异步编程为了追求程序的性能,强行的将线性的程序打乱,程序变得非常的混乱与复杂。对程序状态的管理也变得异常困难。写过Nginx C
Module的同学应该知道我说的是什么。我们开始吐槽 NodeJS 那恶心的层层Callback。
Golang
在我们疯狂被 NodeJS的层层回调恶心到的时候,Golang 作为名门之后开始走入我们的视野。并且迅速的在Web后端极速的跑马圈地。其代表者
Docker 以及围绕这 Docker 展开的整个容器生态圈欣欣向荣起来。其最大的卖点 – 协程 开始真正的流行与讨论起来。
我们开始向写PHP一样来写全异步IO的程序。看上去美好极了,仿佛世界就是这样了。
在网络编程中,我们可以理解为 Golang 的协程本质上其实就是对 IO 事件的封装,并且通过语言级的支持让异步的代码看上去像同步执行的一样。
Golang 协程的应用
我们知道,协程(coroutine)是Go语言中的轻量级线程实现,由Go运行时(runtime)管理。
在一个函数调用前加上go关键字,这次调用就会在一个新的goroutine中并发执行。当被调用的函数返回时,这个goroutine也自动结束。需要注意的是,如果这个函数有返回值,那么这个返回值会被丢弃。
先看一下下面的程序代码:
1 | func Add(x, y int) { |
执行上面的代码,会发现屏幕什么也没打印出来,程序就退出了。
对于上面的例子,main()函数启动了10个goroutine,然后返回,这时程序就退出了,而被启动的执行 Add() 的 goroutine 没来得及执行。我们想要让
main() 函数等待所有 goroutine 退出后再返回,但如何知道 goroutine 都退出了呢?这就引出了多个goroutine之间通信的问题。
在工程上,有两种最常见的并发通信模型:共享内存 和 消息。
下面的例子,使用了锁变量(属于一种共享内存)来同步协程,事实上 Go 语言主要使用消息机制(channel)来作为通信模型
1 | package main |